

Abstracts

Rectangular Waveguides with Impedance Walls

R.B. Dybdal, L. Peters, Jr. and W.H. Peake. "Rectangular Waveguides with Impedance Walls." 1971 Transactions on Microwave Theory and Techniques 19.1 (Jan. 1971 [T-MTT]): 2-8.

The propagation of guided waves in a rectangular geometry having impedance boundary conditions is investigated. An impedance compatibility relation is derived that must be satisfied in order that a separable modal solution exists for a given impedance configuration. Several new rectangular waveguides are developed; among them are 1) a tall rectangular waveguide operating in a dominant H₁₀ mode with no H_{0N} modes; 2) a rectangular waveguide with two parallel anisotropic impedance surfaces; 3) a rectangular waveguide with two parallel walls having isotropic impedance surfaces, the other two walls being anisotropic; 4) a rectangular waveguide supporting only E modes; and 5) rectangular coaxial systems containing impedance surfaces. The modal structure of rectangular waveguides with impedance boundary conditions offers advantages over the conventional waveguide. The potential of oversizing for low-loss and high-power applications is enhanced because of the additional modal control provided by the impedance surfaces. Other applications are suggested.

[Return to main document.](#)

Click on title for a complete paper.